Eco-friendly decarboxylative cyclization in water: practical access to the anti-malarial 4-quinolones

Graphical abstract: Eco-friendly decarboxylative cyclization in water: practical access to the anti-malarial 4-quinolones

Abstract

An environmentally benign decarboxylative cyclization in water has been developed to synthesize 4-quinolones from readily available isatoic anhydrides and 1,3-dicarbonyl compounds. Isatins are also compatible for the reaction to generate 4-quinolones in the presence of TBHP in DMSO. This protocol provides excellent yields under mild conditions for a broad scope of 4-quinolones, and has good functional group tolerance. Only un-harmful carbon dioxide and water are released in this procedure. Moreover, the newly synthesized products have also been selected for anti-malarial examination against the chloroquine drug-sensitive Plasmodium falciparum 3D7 strain. 3u is found to display excellent anti-malarial activity with an IC50 value of 33 nM.

Eco-friendly decarboxylative cyclization in water: practical access to the anti-malarial 4-quinolones

 Author affiliations

https://pubs.rsc.org/en/Content/ArticleLanding/2019/GC/C8GC03570A?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

ethyl 2-(4-(benzyloxy)phenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (3u) White solid, m.p. 288-289 oC;

1H NMR (600 MHz, DMSO-d6) δ 12.14 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.72 (ddd, J = 8.4, 7.1, 1.5 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.52 (td, J = 8.5, 1.7 Hz, 1H), 7.43 – 7.35 (m, 4H), 7.29 – 7.21 (m, 4H), 7.10 (td, J = 7.5, 0.5 Hz, 1H), 5.17 (s, 2H), 3.91 (q, J = 7.1 Hz, 2H), 2.00 (s, 1H), 0.83 (t, J = 7.1 Hz, 3H) ppm;

13C NMR (150 MHz, DMSO-d6) δ 174.1, 166.2, 156.2, 148.0, 139.8, 137.2, 132.8, 132.0, 130.5, 129.4, 128.7, 128.2, 127.6, 125.5, 125.2, 124.3, 123.6, 120.9, 118.9, 116.4, 115.8, 113.5, 70.2, 60.2, 14.0 ppm;

HRMS (ESI) calcd for [C25H21NO4+H]+ 400.1471, found 400.1463.

STR1 STR2

Ethyl(1R,2S,3S,4S)-2-(furan-2-yl)-3-nitro-6-oxobicyclo[2.2.2]octane-1-carboxylate

Ethyl(1R,2S,3S,4S)-2-(furan-2-yl)-3-nitro-6-oxobicyclo[2.2.2]octane-1-carboxylate

Compound 7 Ethyl(1R,2S,3S,4S)-2-(furan-2-yl)-3-nitro-6-oxobicyclo[2.2.2]octane-1-carboxylate To a solution of CAT 10 (128 mg, 0.37 mmol) and the nitroolefin 9 (3.1 g, 22.3 mmol) in 10 mL anhydrous CH2Cl2 at room temperature was added enone 8 (1.8 g, 10.7 mmol). The resulting mixture was stirred at the same temperature until enone 8 is consumed as indicated by TLC. Then DBU (0.34 mL, 3.20 mmol) was added and the mixture was allowed to stir at ambient temperature until completion as indicated by TLC. The solution was concentrated in vacuo and purified by flash chromatography on silica gel (Hexane / EtOAc = 20 / 1) to give 7 (2 g, 61% yield) as a yellow solid. [α]D 23 28.0 (c = 1.0, CHCl3).

1H NMR (400 MHz, CDCl3): δ 7.29 (d, J = 0.8 Hz, 1H), 6.27 (dd, J = 2.0 Hz, J = 3.2 Hz, 1H), 6.14 (d, J = 4.0 Hz, 1H), 4.93 (m, 1H), 4.57 (d, J = 4.4 Hz, 1H), 4.11 (m, 2H), 3.04-3.02 (m, 1H), 2.80-2.75 (m, 1H), 2.60- 2.54 (m, 1H), 2.33-2.29 (m, 1H), 1.88-1.72 (m, 2H), 1.33-1.23 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H).

13C NMR (100 MHz, CDCl3): δ 204.1, 168.7, 151.8, 142.5, 110.5, 108.1, 88.3, 61.3, 56.3, 42.0, 40.8, 33.7, 26.9, 19.2, 13.8.

IR (thin film): 3435, 3141, 3120, 2996, 2959, 1715, 1653, 1621, 1557, 1505, 1473, 1443, 1408, 1371, 1336, 1301, 1336, 1301, 1270, 1236, 1142, 1120, 1083, 1062, 1074, 1045, 1045, 1011, 996, 960, 930, 892, 884, 867, 803, 753, 628, 600, 508, 436 cm-1 .

LRMS (ESI): 308.0 (M+H)+ , 330.0 (M+Na)+ .

HRMS (ESI): calcd for C15H18O6N (M+H) + : 308.1129. Found: 308.1130.

Melting point: 117-118 oC.

Concise asymmetric total synthesis of (−)-patchouli alcohol

 Author affiliations

Abstract

The asymmetric total synthesis of (−)-patchouli alcohol was accomplished in a concise manner. Key reactions include a highly diastereo- and enantioselective formal organocatalytic [4 + 2] cycloaddition reaction, a radical denitration reaction, and an oxidative carboxylation reaction. The formal synthesis of norpatchoulenol was achieved as well.

Graphical abstract: Concise asymmetric total synthesis of (−)-patchouli alcohol

/////////

“ORG CHEM SELECT” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

2,5-Bis(ethoxymethyl)furan

2,5-Bis(ethoxymethyl)furan, 6

1H NMR (CDCl3) = 6.20 (s, 2H), 4.36 (s, 4H), 3.47 (q, 4H, J = 7.1 Hz), 1.16 (t, 6H, J = 7.1 Hz);

13C NMR (CDCl3) = 150.9, 109.7, 65.7, 64.7, 15.1 ppm

PREDICTS

Green Chem., 2017, Advance Article

DOI: 10.1039/C7GC02211E, Paper

F. A. Kucherov, K. I. Galkin, E. G. Gordeev, V. P. Ananikov

Efficient one-pot synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described using a [4 + 2] cycloaddition reaction.

Efficient route for the construction of polycyclic systems from bioderived HMF

 Author affiliations

//////////

NOESY experiment of diastereomer 10α (3S, 5R) …….(3S,5R)-3-Benzyl-5-isobutyl-1,3,4,5-tetrahydro-2H-thieno[3,2-e]- [1,4]diazepin-2-one (10α)

NOESY experiment of diastereomer 10α (3S, 5R)

(3S,5R)-3-Benzyl-5-isobutyl-1,3,4,5-tetrahydro-2H-thieno[3,2-e]- [1,4]diazepin-2-one (10α):

Pale yellow solid, 50% (64.0 mg),

m.p. 66.7–67.4 °C.

[α]D 29 = –122.2 (c = 1.0, MeOH).

1 H NMR (CDCl3, 300 MHz): δ = 0.90 (d, J = 6.3 Hz, 3 H), 0.92 (d, J = 6.6 Hz, 3 H), 1.36–1.54 (m, 2 H), 1.81 (m, 1 H), 2.08 (s, 1 H), 3.13 (d, J = 5.1 Hz, 2 H), 3.93 (t, J = 5.1 Hz, 1 H), 4.67 (dd, J = 3.0, J = 9.9 Hz, 1 H), 7.15–7.30 (m, 8 H) ppm.

13C NMR (CDCl3, 75 MHz): δ = 21.48, 23.79, 24.71, 36.81, 42.09, 59.63, 73.76, 111.68, 120.97, 125.09, 126.92, 126.97, 128.70, 129.83 (2 C), 135.11, 136.90, 172.65 ppm.

LC–MS (ESI+): m/z = 315.2 [M + H]+.

HRMS: calcd. for C18H23N2OS 315.1531 [M + H]+; found 315.1531

10.1002/ejoc.201500943

///////////

trans-2-(benzo[d][1,3]dioxol-5-yl)-2-methylcyclopropane-1-carbonitrile

trans-2-(benzo[d][1,3]dioxol-5-yl)-2-methylcyclopropane-1-carbonitrile

yellowish solid (53 mg, 66%);

m.p. = 72 °C;

1 H-NMR (600 MHz, CDCl3): δ = 6.77 – 6.71 (m, 3H), 5.94 (s, 2H), 1.63 – 1.59 (m, 4H), 1.50 (dd, J = 9.1, 5.0 Hz, 1H), 1.26 (t, J = 5.3 Hz, 1H);

13CNMR (151 MHz, CDCl3): δ = 147.80, 146.73, 136.69, 120.64, 120.23, 108.28, 108.17, 101.19, 28.75, 23.86, 21.40, 11.30;

HRMS (ESI): m/z calc. for [C12H11O2NK]: 240.0414, found 240.04204;

IR (KBr): νmax/cm-1 = 2972, 2897, 2231, 1490, 1457, 1434, 1349, 1226, 1080, 1033, 924, 869, 808, 728.

1H NMR PREDICT

13C NMR PREDICT

 Green Chem., 2017, Advance Article

DOI: 10.1039/C7GC00602K, Communication

//////////


C[C@@]1([C@H](C#N)C1)C2=CC(OCO3)=C3C=C2

2-{[6-Chloro-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]methyl}-4-fluorobenzonitrile

2-{[6-Chloro-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]methyl}-4-fluorobenzonitrile (4)

white solid . Mp: 193–195 °C.
1H NMR (400 MHz, CDCl3) δ (ppm): 7.74–7.76(m, 1H), 7.14–7.17 (m, 1H), 6.95–6.97 (m, 1H), 6.05 (s, 1H), 5.51 (s, 2H), 3.40 (s, 3H).

8-Oxo-5-aza-spiro[2.5]octane-5-carboxylic acid benzyl ester,

str2

1H NMR PREDICT OF TITLE COMPD

…………………………………
13C NMR PREDICT

……………….

8-Oxo-5-aza-spiro[2.5]octane-5,7-dicarboxylic acid 5 benzyl ester 7 methyl ester
COMPD 5

SYNTHESIS CONSTRUCTION BY WORLDDRUGTRACKER………EXCLUSIVE

 

सुकून उतना ही देना प्रभू, जितने से जिंदगी चल जाये। औकात बस इतनी देना, कि औरों का भला हो जाये।
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

09b37-misc2b027LIONEL MY SON
He was only in first standard in school when I was hit by a deadly one in a million spine stroke called acute transverse mylitis, it made me 90% paralysed and bound to a wheel chair, Now I keep him as my source of inspiration and helping millions, thanks to millions of my readers who keep me going and help me to keep my son happy
सुकून उतना ही देना प्रभू, जितने से
जिंदगी चल जाये।
औकात बस इतनी देना,
कि औरों का भला हो जाये।

 

////////////

7-allyl-6-hydroxy-indan-1-one…Mom will teach you NMR

Figure US08242291-20120814-C00009

Thermal Claisen rearrangement on 6-allyloxy-indan-1-one,  (III) to obtain 7-allyl-6-hydroxy-indan-1-one, (IV):

  • Formula: C12H12O2
  • Molecular Weight: 188.22200
Synonyms:

http://www.google.com/patents/US8242291
EXAMPLE 2

This example refers to reaction b of the process of the invention.
20 kg of the intermediate of formula (III) prepared as described in example 1 are suspended in 50 l of Dowtherm A under nitrogen flow. In an inert atmosphere, it is heated to approximately 200° C. for approximately 5 hours. Upon completion of the reaction (TLC) a clear red-brown solution is obtained, without the formation of black pitch. The reaction mixture is cooled slowly to 25° C. (a partial precipitation is observed). 100 l (5 volumes) of cyclohexane are added and it is cooled to between 0 and 5° C. for one hour. It is filtered by washing with cyclohexane and dried at reduced pressure and T=45° C. for at least 12 hours. 16.8 kg of yellow solid are obtained which is refluxed in 80 l of toluene in the presence of decolouring carbon. The suspension is filtered, washing it with hot toluene. Part of the solvent is distilled at reduced pressure until the beginning of crystallisation. It is cooled at room temperature and then to between 0 and 5° C. for at least one hour.
The filtered solid is washed with cold toluene and dried at reduced pressure at T=45° C. for at least 12 hours. 15.3 kg of intermediate (IV) are obtained in the form of an almost white solid of quality suitable for continuation of the synthesis.
1H-NMR and mass spectroscopic analyses are performed on part of the product thus obtained, purified by chromatography for analytical purposes (silica gel, 7 parts in volume of heptane—3 parts in volume of ethyl acetate), obtaining the following results:
Electron impact mass: [M+]=188
1H-NMR (500 MHz, CDCl3): δ (ppm)
2.72 ppm, t, J=6 Hz, 2H,  AR C=OCH2 CH2 AR
3.03 ppm, t, J=6 Hz, 2H, AR C=OCH2 CH2 AR
4.03 ppm, d, J=6 Hz, 2H, ARCH2CH=CH2
5.13-5.20, Σd, 2H, ARCH2CH=CH2
5.60 ppm, s, 1H, 0H
5.98-6.10 ppm, m, 1H, CH2CH=CH2
7.13 ppm, d, J=8 Hz, 1H, AR
7.25, d, J=8 Hz, 1H. AR
PREDICT
1H NMRCLICK ON PICTURE

6-hydroxy-7-prop-2-enyl-2,3-dihydroinden-1-one NMR spectra analysis, Chemical CAS NO. 320574-77-4 NMR spectral analysis, 6-hydroxy-7-prop-2-enyl-2,3-dihydroinden-1-one H-NMR spectrum13 C NMR

CLICK ON PICTURE

6-hydroxy-7-prop-2-enyl-2,3-dihydroinden-1-one NMR spectra analysis, Chemical CAS NO. 320574-77-4 NMR spectral analysis, 6-hydroxy-7-prop-2-enyl-2,3-dihydroinden-1-one C-NMR spectrum
6-hydroxy-7-prop-2-enyl-2,3-dihydroinden-1-one

COSY PREDICT

HMBC PREDICT

…………….
COCK SAYS MOM CAN TEACH YOU NMR

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE
Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK
Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

Your Aunt can teach you Organic Opectroscopy

Organic spectroscopy should be brushed up and you get confidence

read my blog

 

Organic chemists from Industry and academics to interact on Spectroscopy techniques for Organic compounds ie NMR, MASS, IR, UV Etc. email me ……….. amcrasto@gmail.com

http://orgspectroscopyint.blogspot.in/  is the link

feder-0005.gif from 123gifs.euamcrasto@gmail.com

Oleanolic acid spectral data and interpretation

 http://orgspectroscopyint.blogspot.in/2014/08/oleanolic-acid-spectral-data-and.html
Chemical structure for Oleanolic AcidOleanolic acidOleanolic acid
(4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

Oleanic acid, Caryophyllin, Astrantiagenin C, Giganteumgenin C, Virgaureagenin B, 3beta-Hydroxyolean-12-en-28-oic acid, OLEANOLIC_ACID
Molecular Formula: C30H48O3
Molecular Weight: 456.70032

http://orgspectroscopyint.blogspot.in/2014/08/oleanolic-acid-spectral-data-and.html

Ursolic acid [(3b)-3-Hydroxyurs-12-en-28-oic acid] rarely occurs without its isomer oleanolic acid [(3b)-3-Hydroxyolean-12-en-28-oic acid] They may occur in their free acid form, as shown in Figure 1, or as aglycones for triterpenoid saponins which are comprised of a triterpenoid aglycone linked to one or more sugar moieties. Ursolic and oleanolic acids are similar in pharmacological activity

A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin.

MS
EIMS m/z (rel. int.) 456 [M]+ (5), 412 (3), 248 (100), 203 (50), 167 (25), 44 (51)

IR KBR
(KBr) 3500, 2950, 2850, 1715; 1H-NMR (250 MHz, pyridine-d5) δ: 5.49 (1H, s, H-12), 3.47 (1H, t, J = 8.0 Hz, H-3), 3.30 (1H, m, H-18), 1.12 (3H, s, CH3-27), 0.96 (3H, s, CH3-30), 0.91 (3H, s, CH3-25), 0.89 (3H, s, CH3-23), 0.87 (3H, s, CH3-24), 0.75 (3H, s, CH3-26)

http://orgspectroscopyint.blogspot.in/2014/08/oleanolic-acid-spectral-data-and.html

1H NMR

(250 MHz, pyridine-d5)δ: 5.49 (1H, s, H-12), 3.47 (1H, t, J = 8.0 Hz, H-3), 3.30 (1H, m, H-18), 1.12 (3H, s, CH3-27), 0.96 (3H, s, CH3-30), 0.91 (3H, s, CH3-25), 0.89 (3H, s, CH3-23), 0.87 (3H, s, CH3-24), 0.75 (3H, s, CH3-26)

13 C NMR

(63 MHz, pyridine-d5) δ: 180.2 (C-28), 144.8 (C-13), 122.5 (C-12), 78.0 (C-3), 55.7 (C-5), 48.0 (C-9), 46.6 (C-8, 17), 42.1 (C-14), 39.7 (C-4), 39.4 (C-1), 37.3 (C-10), 33.2 (C-7), 32.9 (C-29), 32.4 (C-21), 30.9 (C-20), 28.7 (C-23), 27.2 (C-2), 26.9 (C-15), 26.1 (C-30), 23.7 (C-11), 23.6 (C-16), 18.7 (C-6), 17.4 (C-26), 16.5 (C-24), 15.5 (C-25)

http://orgspectroscopyint.blogspot.in/2014/08/oleanolic-acid-spectral-data-and.html

http://www.google.com/patents/US20120237629

FIG. 4 shows the 1H NMR spectrum of oleanolic acid;
FIG. 5 shows the 13C NMR spectrum of oleanolic acid;
FIG. 6 shows the 13C DEPT NMR spectrum of oleanolic acid;
FIG. 7 shows the 113C HSQC NMR spectrum of oleanolic acid;
see below

http://orgspectroscopyint.blogspot.in/2014/08/oleanolic-acid-spectral-data-and.html

EXAMPLE 2 Extraction and Isolation of Oleanolic Acid (9) and Maslinic Acid (10) from Cloves

Syzygium aromaticum dried buds or whole cloves were obtained commercially. The cloves (1.5 kg, whole) of Syzygium aromaticum were sequentially and exhaustively extracted with hexane and ethyl acetate to give, after solvent removal in vacuo, a hexane extract (68.8 g, 4.9%) and an ethyl acetate extract (34.1 g, 2.3%). A portion of the ethyl acetate extract (10.0 g), was subjected to chromatographic separation on silica gel (60-120 mesh) column (40×5.0 cm). Elution with hexane/ethyl acetate solvent mixtures (8:2→6:4) afforded pure oleanolic acid (9) (4.7 g, 1.06%), a mixture of oleanolic acid (9) and maslinic acid (10) (0.5 g), and pure maslinic acid (10) (0.25 g). The structures of oleanolic acid (9) and maslinic acid (10) (as 2,3-diacetoxyoleanolic acid) were confirmed by spectroscopic data analysis (1D and 2D 1H NMR and 13C NMR experiments) (FIGS. 4-7 and FIGS. 8-10, respectively).
ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

amcrasto@gmail.com

MOBILE-+91 9323115463
GLENMARK SCIENTIST ,  INDIA
web link
アンソニー     安东尼   Энтони    안토니     أنتوني
blogs are
 

 MY CHINA, VIETNAM  AND JAPAN BLOGS

http://me.zing.vn/u/amcrasto

ICELAND, RUSSIA, ARAB

BOBRDOBRBLAND ICELAND100zakladokadfty

GROUPS

you can post articles and will be administered by me on the google group which is very popular across the world

OPD GROUPSPACESSCOOP OCIorganic-process-development GOOGLE, TVINX, MENDELEY WDT,SCIPEOPLE OPD,EPERNICUS OPDSYNTHETIC ORGANIC CHEMISTRYLinkedIn group, DIIGO OPD,LINKEDIN OPD, WDT LINKEDIN, WDTI ZING

shark

 

 

Oleanolic acid spectral data and interpretation

Oleanolic acid spectral data and interpretation

Chemical structure for Oleanolic Acid

Oleanolic acid

Oleanolic acid
(4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

see full interpretation, 1H NMR, 13C NMR at