Trioxacarcin A

New Drug Approvals

Trioxacarcin A, DC-45A

CAS No. 81552-36-5

  • Molecular FormulaC42H52O20
  • Average mass876.850 Da
  • 17′-[(4-C-Acetyl-2,6-dideoxyhexopyranosyl)oxy]-19′-(dimethoxymethyl)-10′,13′-dihydroxy-6′-methoxy-3′-methyl-11′-oxospiro[oxirane-2,18′-[16,20,22]trioxahexacyclo[,15.05,14.07,12.017,21 ]docosa[2(15),3,5(14),6,12]pentaen]-8′-yl 4-O-acetyl-2,6-dideoxy-3-C-methylhexopyranoside
     (1S,2R,3aS,4S,8S,10S,13aS)-13a-(4-C-Acetyl-2,6-dideoxy-alpha-L-xylo-hexopyranosyloxy)-2-(dimethoxymethyl)-10,12-dihydroxy-7-methoxy-5-methyl-11-oxo-4,8,9,10,11,13a-hexahydro-3aH-spiro[2,4-epoxyfuro[3,2-b]naphtho[2,3-h]-1-benzopyran-1,2′-oxiran]-8-yl 4-O-acetyl-2,6-dideoxy-3-C-methyl-alpha-L-xylo-hexopyranoside
  • Kyowa Hakko Kirin   INNOVATOR

Trioxacarcin B

Trioxacarcin B; Antibiotic DC 45B1; DC-45-B1; Trioxacarcin A, 14,17-deepoxy-14,17-dihydroxy-; AC1MJ5N1; 81534-36-3;

Molecular Formula:C42H54O21
Molecular Weight:894.86556 g/mol

Trioxacarcin C

(CAS NO.81781-28-4):C42H54O20
Molecular Weight: 878.8662 g/mol
Structure of Trioxacarcin C :

The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells

Natural products that bind and often covalently modify duplex DNA figure prominently in chemotherapy for human cancers. The trioxacarcins are a new class of DNA- modifying natural products with antiproliferative effects. The trioxacarcins were first described in 1981 by Tomita and coworkers (Tomita et al. , J. Antibiotics, 34( 12): 1520- 1524…

View original post 5,713 more words



Green Chem., 2016, Advance Article

DOI: 10.1039/C5GC02977E, Communication

Ryosuke Matake, Yusuke Adachi, Hiroshi Matsubara

A convenient preparation of vinyl ethers from alcohols with calcium carbide was developed. This protocol is an alternative to the Favorskii-Reppe reaction without any high pressure device.

Vinyl ethers are important and useful synthetic building blocks. Using a test tube with a screw cap, a convenient preparation of vinyl ethers from alcohols with calcium carbide under superbasic catalytic conditions (KOH/DMSO) was developed. The vinylation of primary and secondary alcohols was successfully achieved, affording the desired products in good yields. The gram-scale preparation of a vinyl ether was also demonstrated. In this reaction, calcium carbide acts as an acetylene source, constituting a safer alternative to acetylene gas.

 F. de Nanteuil, E. Serrano, D. Perrotta and J. Waser, J. Am. Chem. Soc., 2014, 136, 6239.


1H NMR PREDICT using nmrdb , signals may vary , use your discretion to understand sequence



Synthesis of vinyl ethers of alcohols using calcium carbide under superbasic catalytic conditions (KOH/DMSO)

*Corresponding authors

aDepartment of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Japan

Green Chem., 2016, Advance Article

DOI: 10.1039/C5GC02977E