2-{[6-Chloro-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]methyl}-4-fluorobenzonitrile

2-{[6-Chloro-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]methyl}-4-fluorobenzonitrile (4)

white solid . Mp: 193–195 °C.
1H NMR (400 MHz, CDCl3) δ (ppm): 7.74–7.76(m, 1H), 7.14–7.17 (m, 1H), 6.95–6.97 (m, 1H), 6.05 (s, 1H), 5.51 (s, 2H), 3.40 (s, 3H).

Efficient synthesis of isoquinolines in water by a Pd-catalyzed tandem reaction of functionalized alkylnitriles with arylboronic acids

Efficient synthesis of isoquinolines in water by a Pd-catalyzed tandem reaction of functionalized alkylnitriles with arylboronic acids

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC00267J, Paper
Kun Hu, Linjun Qi, Shuling Yu, Tianxing Cheng, Xiaodong Wang, Zhaojun Li, Yuanzhi Xia, Jiuxi Chen, Huayue Wu
Pd-catalyzed tandem reaction of functionalized alkylnitriles with arylboronic acids for the synthesis of diverse isoquinolines in water.

Efficient synthesis of isoquinolines in water by a Pd-catalyzed tandem reaction of functionalized alkylnitriles with arylboronic acids

Kun Hu,a   Linjun Qi,a   Shuling Yu,a   Tianxing Cheng,a  Xiaodong Wang,a   Zhaojun Li,b   Yuanzhi Xia,a  Jiuxi Chen*a and   Huayue Wua  
*Corresponding authors
aCollege of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
E-mail: jiuxichen@wzu.edu.cn
bInstitute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, China
Green Chem., 2017, Advance Article

DOI: 10.1039/C7GC00267J, 

A palladium-catalyzed tandem reaction of 2-(cyanomethyl)benzonitriles or 2-(2-carbonylphenyl)acetonitriles with arylboronic acids in water has been developed for the first time. This reaction features good functional group tolerance and provides a new strategy for the synthesis of diverse isoquinolines under mild conditions. The use of water as the reaction medium makes the synthesis process environmentally benign. Preliminary mechanistic experiments indicate that the major reaction pathway involves carbopalladation of the C(sp3)–cyano group and subsequent intramolecular cyclization findings that were further supported by density functional theory (DFT) calculations.
Capture
STR1

1,3-Diphenylisoquinoline (3a). Pale-yellow solid (103.5 mg, 92%),

mp 78-79 oC (lit.24,  73-74.5 oC). 24 J. D. Tovar and T. M. Swager, J. Org. Chem., 1999, 64, 6499

1H NMR (500 MHz, CDCl3) δ 8.25-8.23 (m, 2H), 8.15-8.14 (m, 1H), 8.09 (s, 1H), 7.95-7.93 (m, 1H), 7.84-7.83 (m, 2H), 7.70-7.67 (m, 1H), 7.59-7.50 (m, 6H), 7.44-7.40 (m, 1H);

13C NMR (125 MHz, CDCl3) δ 160.5, 150.3, 140.1, 139.8, 138.0, 130.4, 130.2, 128.8, 128.7, 128.6, 128.4, 127.7, 127.6, 127.2, 127.0, 126.0, 115.8.

//////// isoquinoline, pd-catalyzed, arylboronic acids

A Brønsted acid catalysed enantioselective Biginelli reaction

A Bronsted acid catalysed enantioselective Biginelli reaction

Green Chem., 2017, Advance Article
DOI: 10.1039/C6GC03274E, Paper
Margherita Barbero, Silvano Cadamuro, Stefano Dughera
A chiral derivative of 1,2-benzenedisulfonimide, namely (-)-4,5-dimethyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide is herein proven to be an efficient chiral catalyst in a one pot three-component Biginelli reaction.

A Brønsted acid catalysed enantioselective Biginelli reaction

*Corresponding authors
aDipartimento di Chimica, Università di Torino, C.so Massimo d’Azeglio 48, 10125 Torino, Italy
E-mail: stefano.dughera@unito.it
Green Chem., 2017, Advance Article

DOI: 10.1039/C6GC03274E

A chiral derivative of 1,2-benzenedisulfonimide, namely (−)-4,5-dimethyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide is herein proven to be an efficient chiral catalyst in a one pot three-component Biginelli reaction. In fact the yields of the target dihydropyrimidines were very high (25 examples; average 91%) and enantiomeric excesses were always excellent (14 examples; average 97%). Ultimately, we herein propose a procedure that displays a number of benefits and advantages including the total absence of solvents, mild reaction conditions, relatively short reaction times and stoichiometric reagent ratios. Target dihydropyrimidines are obtained in adequate purity, making further chromatographic purification unnecessary. Moreover, the chiral catalyst was easily recovered from the reaction mixture and reused, without the loss of catalytic activity.

(R)-(-)-Ethyl 6-methyl-4-phenyl-2-thioxo-3,4-dihydropyrimidine-5-carboxylate (5a): pale grey solid (135 mg, 98% yield); mp 201–202 °C ( from EtOH; lit17 200–202 °C). 96.4% Ee (GC connected to a J&W Scientific Cyclosil-B column; stationary phase: 30% heptakis (2,3-di-Omethyl-6-O-t-butyldimethylsilyl)-β-cyclodextrin in DB-1701), tR= 12.11 min (major), tR= 12.54 min (minor); [a]D -65.4 (c 0.1 in MeOH).

1H NMR (200 MHz, DMSO-d6): δ = 10.24 (br s, 1H), 9.55 (br s, 1H), 7.31–7.12 (m, 5H), 5.09 (d, J = 3.9 Hz, 1H), 3.92 (q, J = 7.0 Hz, 2H), 2.21 (s, 3H), 1.01 (t, J = 7.0 Hz, 3H);

13C NMR (50 MHz, DMSO-d6): δ = 174.9, 165.8, 145.7, 129.3, 128.3, 127.0, 101.3, 60.2, 54.7, 17.8, 14.7.

MS (m/z, EI): 276 [M+ ] (45), 247 (40), 199 (100). IR (neat) ν (cm−1): 3311 (NH), 3112 (NH), 1665 (CO), 1195 (CS).

USES

Image result for Biginelli reaction

Image result for Biginelli reaction

Image result for Biginelli reaction

////////////Bronsted acid,  catalysed, enantioselective, Biginelli reaction

Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts

Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts

Green Chem., 2017, 19,809-815
DOI: 10.1039/C6GC03141B, Paper
Haigen Huang, Xueguang Wang, Xu Li, Chenju Chen, Xiujing Zou, Weizhong Ding, Xionggang Lu
A non-noble Ni-MoO3/CN@SBA-15 catalyst exhibits unprecedented catalytic activity and chemoselectivity for the reduction of nitroarenes to anilines in ethanol with hydrazine hydrate.

Highly chemoselective reduction of nitroarenes over non-noble metal nickel-molybdenum oxide catalysts

Haigen Huang,a   Xueguang Wang,*ab   Xu Li,a  Chenju Chen,b   Xiujing Zou,b   Weizhong Dingab and  Xionggang Lu*ab  
*Corresponding authors
aState Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
E-mail: wxg228@shu.edu.cn, luxg@shu.edu.cn
bShanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, China
Green Chem., 2017,19, 809-815

DOI: 10.1039/C6GC03141B

The chemoselective reduction of nitroarenes is an important transformation for the production of arylamines, which are the primary intermediates in the synthesis of pharmaceuticals, agrochemicals and dyes.
Heterogeneous non-noble metal nickel-molybdenum oxide catalysts supported on ordered mesoporous silica SBA-15 (Ni-MoO3/CN@SBA-15) were prepared for the first time by treating SBA-15-supported nickel-molybdenum oxide materials with 1,10-phenanthroline, and exhibited unprecedented catalytic activity and chemoselectivity for the reduction of various substituted nitroarenes to the corresponding aromatic amines in ethanol with hydrazine hydrate as a hydrogen donor under mild conditions owing to the synergistic effect of metal Ni and MoO3 species, affording excellent yields of >99% within very short reaction periods (≤60 min).
The Ni-MoO3/CN@SBA-15 catalysts were highly stable and could easily be recovered by simple filtration or by an external magnetic field for at least ten recycling reactions without any observable loss of catalytic performance or leaching of metal components.
//////////

Synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions at room temperature

Synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions at room temperature

Green Chem., 2017, Advance Article
DOI: 10.1039/C6GC03494B, Paper
Zheng Fang, Wen-Li Hu, De-Yong Liu, Chu-Yi Yu, Xiang-Guo Hu
A procedure for the synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions has been developed.

Synthesis of tetrazines from gem-difluoroalkenes under aerobic conditions at room temperature

Zheng Fang,a   Wen-Li Hu,a   De-Yong Liu,a  Chu-Yi Yuab and   Xiang-Guo Hu*a  
*Corresponding authors
aNational Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
E-mail: huxiangg@iccas.ac.cn
bBeijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Green Chem., 2017, Advance Article

DOI: 10.1039/C6GC03494B, http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C6GC03494B?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

An efficient and green procedure for the synthesis of tetrazines has been developed based on an old chemistry reported by Carboni in 1958. Both symmetric and asymmetric 3,6-disubstituted 1,2,4,5-tetrazines can be obtained in moderate to high yields from the corresponding gem-difluoroalkenes under aerobic conditions at room temperature. This work represents a rare example that ambient air is utilized as an oxidant for the synthesis of tetrazines.
Synthesis of symmetric 3,6-dialkyl-1,2,4,5−tetrazine(3a−3h)
To a solution of 1,1−difluoroalkenes (1a, 50 mg, 0.27 mmol) in N,N-dimethylformide (DMF,5 mL) was added hydrazine (80%, 35 mg, 1.35 mmol). After stirring at room temperature for 4−6 hours, saturated ammonium chloride (20 mL) was added and the reaction mixture was extracted with dichloromethane (10 mL×3). The organic layer was combined, dried with anhydrous sodium sulfate. The solvent was concentrated and the crude product was dissolved in a suspension of Ethyl Acetate(5 mL) and 10% potassium carbonate solution(wt%, 5 mL) and stirred at room temperature for 24h under air atomerspere until the organic layer turned into amaranth obviously. The organic layer was collected, dried with anhydrous sodium sulfate. The crude product was purified by flash column chromatography[silica gel(#100–200), toluene] to afford the pure 1,2,4,5−tetrazines(3a−3h).
3,6−bis([1,1’−biphenyl]−4−ylmethyl)−1,2,4,5−tetra zine (3a).
str1
(41 mg, 83%).
purple solid; m.p. 200−202°C;
IR(KBr) nmax/cm−1 2924, 2850, 1488, 1451, 1432, 1388, 851, 750;
1 H NMR (400 MHz, CDCl3) 7.55−7.33 (m, 18H), 4.65 (s, 4H).
13C NMR (100 MHz, CDCl3) δ 169.2, 140.6, 140.4, 134.8, 129.7, 128.8, 127.6, 127.4, 127.1, 40.9;
HRMS (ESI): calcd. for C28H22N4 [M+H]+ 415.19172, found 415.19124.

///////tetrazines,  gem-difluoroalkenes, aerobic conditions, room temperature