AK 3280

New Drug Approvals



AK 3280; GDC3280; RG 6069

C19 H15 F3 N4 O2, 388.34
CAS 1799412-33-1
4H-Benzimidazol-4-one, 1,5-dihydro-1-methyl-7-(1-methyl-1H-pyrazol-4-yl)-5-[4-(trifluoromethoxy)phenyl]-

Ci8Hi4N502F3, mass 389.3 g/mol),


Ark Biosciences , under license from Roche , is developing AK-3280, an antifibrotic agent, for the potential oral treatment of IPF. In July 2018, Ark intended to further clinical development of the drug, for IPF. In June 2019, a phase I trial was planned in Sweden.

  • Originator Genentech
  • Mechanism of Action Undefined mechanism
  • Phase I Interstitial lung diseases
  • 19 Jun 2019Ark Biosciences plans a phase I trial for Idiopathic pulmonary fibrosis (In volunteers) in Sweden (PO, Tablet), in August 2019 , (NCT03990688)
  • 28 Sep 2018GDC 3280 is still in phase I trials for Interstitial lung diseases (Genentech pipeline, September 2018)
  • 28 Jun 2018No recent reports of development identified for phase-I development in Fibrosis(In…

View original post 3,170 more words

SRT 1720

New Drug Approvals


SRT-1720 diHCl


CAS: 1001645-58-4 (di HCl) , 925434-55-5 (free base)   1001645-58-4 (HCl)
Chemical Formula: C25H25Cl2N7OS
Molecular Weight: 542.483
Elemental Analysis: C, 55.35; H, 4.65; Cl, 13.07; N, 18.07; O, 2.95; S, 5.91

SRT-1720 HCl, SRT-1720 hudrochloride; SRT1720; SRT-1720; SRT 1720; CAY10559; CAY-10559; CAY 10559; SIRT-1933; SIRT 1933; SIRT1933.

 N-(2-(3-(piperazin-1-ylmethyl)imidazo[2,1-b]thiazol-6-yl)phenyl)quinoxaline-2-carboxamide dihydrochloride


  • Molecular FormulaC25H23N7OS
  • Average mass469.561 Da

SRT-1720, also known as CAY10559 and is a drug developed by Sirtris Pharmaceuticals intended as a small-molecule activator of the sirtuin subtype SIRT1. It has similar activity in the body to the known SIRT1 activator resveratrol, but is 1000x more potent. In animal studies it was found to improve insulin sensitivity and lower plasma glucose levels in fat, muscle and liver tissue, and increased mitochondrial and metabolic function. A study of SRT1720 conducted by the National Institute on Aging found that the drug may extend the lifespan…

View original post 1,417 more words

Thiotepa, チオテパ ,тиотепа , ثيوتيبا , 塞替派 ,

New Drug Approvals

ChemSpider 2D Image | thiotepa | C6H12N3PS

Thiotepa, チオテパ

  • Use:antineoplastic, alkylating agent
  • Chemical name:1,1′,1”-phosphinothioylidynetrisaziridine
  • Formula:C6H12N3PS
  • MW:189.22 g/mol
  • CAS:52-24-4
  • EINECS:200-135-7
  • LD50:14500 μg/kg (M, i.v.); 38 mg/kg (M, p.o.);
    9400 μg/kg (R, i.v.)
  • Aziridine, 1,1′,1”-phosphinothioylidynetris-
    Aziridine, 1-[bis(1-aziridinyl)phosphinothioyl]-
    Phosphorothioic tri(ethyleneamide)

JAPAN APPROVED, Rethio, PMDA, 2019/3/26

тиотепа [Russian] [INN]
ثيوتيبا [Arabic] [INN]
塞替派 [Chinese] [INN]

Thiotepa (INN,[1] chemical name: N,N′,N′′-triethylenethiophosphoramide) is an alkylating agent used to treat cancer.

Thiotepa is an organophosphorus compound with the formula SP(NC2H4)3.[2] It is an analog of N,N′,N′′-triethylenephosphoramide (TEPA), which contains tetrahedral phosphorus and is structurally akin to phosphate. It is manufactured by heating aziridine with thiophosphoryl chloride.


Thiotepa was developed…

View original post 800 more words


New Drug Approvals

AcefyllineSkeletal formula of acefylline


  • Molecular FormulaC9H10N4O4
  • Average mass238.200 Da
(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)acetic acid
1,2,3,6-Tetrahydro-1,3-dimethyl-2,6-dioxo-7H-purine-7-acetic Acid
1,3-Dimethylxanthine-7-acetic acid
211-490-2 [EINECS]
652-37-9 [RN]
7H-Purine-7-acetic acid, 1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-
CAS Registry Number: 652-37-9
CAS Name: 1,2,3,6-Tetrahydro-1,3-dimethyl-2,6-dioxopurine-7-acetic acid
Additional Names: carboxymethyltheophylline; 7-theophyllineacetic acid
Molecular Formula: C9H10N4O4
Molecular Weight: 238.20
Percent Composition: C 45.38%, H 4.23%, N 23.52%, O 26.87%
Literature References: Prepn: DE 352980 (1922 to E. Merck); Frdl. 14, 1320; S. M. Ride et al., Pharmazie 32, 672 (1977). Prepn of salts: J. Baisse, Bull. Soc. Chim. Fr. 1949, 769; M. Milletti, F. Virgili, Chimica 6, 394 (1951), C.A. 46, 8615h (1952). GC determn in urine: J. Zuidema, H. Hilbers, J. Chromatogr. 182, 445 (1980). HPLC determn in serum and pharmacokinetics: S. Sved et al.,Biopharm. Drug Dispos. 2, 177 (1981).
Properties: Crystals from water, mp 271°.
Melting point: mp…

View original post 386 more words

Structural evolution of carbon in an Fe@C catalyst during the Fischer–Tropsch synthesis reaction

Graphical abstract: Structural evolution of carbon in an Fe@C catalyst during the Fischer–Tropsch synthesis reaction

Structural evolution of carbon in an Fe@C catalyst during the Fischer–Tropsch synthesis reaction

 Author affiliations


A pseudo-in situ research method was applied to provide insight into the structural evolution of carbon in an Fe@C catalyst at different stages of the Fischer–Tropsch reaction. Five typical stages of the catalyst were selected for in-depth structural investigation; these were: the fresh catalyst, reduced catalyst, and catalyst in the stable conversion period, in an increased-conversion period and at the inactivation stage. The results indicated that the integral structure of Fe@C constantly changed in the Fischer–Tropsch reaction. Iron carbide transformed from the Fe phase that was easily oxidized under high temperature Fischer–Tropsch conditions, and the carbon framework was completely destroyed in the reaction process, leading to a drastic decrease in the specific surface area of the material. This destruction could have two opposing effects: on the one hand, the loss of carbon could re-expose the active sites that have been covered by carbon at a reaction temperature of 320 °C and favor the reaction; on the other hand, the deposition of carbon could block the active sites and lead to inactivation when the reaction temperature is over 340 °C.



Eco-friendly decarboxylative cyclization in water: practical access to the anti-malarial 4-quinolones

Graphical abstract: Eco-friendly decarboxylative cyclization in water: practical access to the anti-malarial 4-quinolones


An environmentally benign decarboxylative cyclization in water has been developed to synthesize 4-quinolones from readily available isatoic anhydrides and 1,3-dicarbonyl compounds. Isatins are also compatible for the reaction to generate 4-quinolones in the presence of TBHP in DMSO. This protocol provides excellent yields under mild conditions for a broad scope of 4-quinolones, and has good functional group tolerance. Only un-harmful carbon dioxide and water are released in this procedure. Moreover, the newly synthesized products have also been selected for anti-malarial examination against the chloroquine drug-sensitive Plasmodium falciparum 3D7 strain. 3u is found to display excellent anti-malarial activity with an IC50 value of 33 nM.

Eco-friendly decarboxylative cyclization in water: practical access to the anti-malarial 4-quinolones

 Author affiliations


ethyl 2-(4-(benzyloxy)phenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (3u) White solid, m.p. 288-289 oC;

1H NMR (600 MHz, DMSO-d6) δ 12.14 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.72 (ddd, J = 8.4, 7.1, 1.5 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.52 (td, J = 8.5, 1.7 Hz, 1H), 7.43 – 7.35 (m, 4H), 7.29 – 7.21 (m, 4H), 7.10 (td, J = 7.5, 0.5 Hz, 1H), 5.17 (s, 2H), 3.91 (q, J = 7.1 Hz, 2H), 2.00 (s, 1H), 0.83 (t, J = 7.1 Hz, 3H) ppm;

13C NMR (150 MHz, DMSO-d6) δ 174.1, 166.2, 156.2, 148.0, 139.8, 137.2, 132.8, 132.0, 130.5, 129.4, 128.7, 128.2, 127.6, 125.5, 125.2, 124.3, 123.6, 120.9, 118.9, 116.4, 115.8, 113.5, 70.2, 60.2, 14.0 ppm;

HRMS (ESI) calcd for [C25H21NO4+H]+ 400.1471, found 400.1463.


Development of an SNAr Reaction: A Practical and Scalable Strategy To Sequester and Remove HF


Abstract Image

A simple and operationally practical method to sequester and remove fluoride generated through the SNAr reaction between amines and aryl fluorides is reported. Calcium propionate acts as an inexpensive and environmentally benign in situ scrubber of the hydrofluoric acid byproduct, which is simply precipitated and filtered from the reaction mixture during standard aqueous workup. The method has been tested from 10 to 100 g scale of operation, showing >99.5% decrease in fluoride content in each case. Full mass recovery of calcium fluoride is demonstrated at both scales, proving this to be a general, efficient, and robust method of fluoride abstraction to help prevent corrosion of glass-lined reactors.

Development of an SNAr Reaction: A Practical and Scalable Strategy To Sequester and Remove HF

View original post 122 more words