Aqua Mediated One-Pot Synthesis of 2-Amino-tetrahydrobenzo[b]pyran Derivatives Catalyzed by Mg(NO3)2•6H2O

Originally posted on Green Chemistry International:


Aqua Mediated One-Pot Synthesis of 2-Amino-tetrahydrobenzo[b]pyran Derivatives Catalyzed by Mg(NO3)2•6H2O

Letters in Organic Chemistry

Volume: 11
Issue Number: 7
First Page: 475
Last Page: 479
Page Count: 5
DOI: 10.2174/1570178611666140401221534

Author(s): Boudjemaa Boumoud, Amina Debbache, Taoues Boumoud, Raouf Boulcina and Abdelmadjid Debache

Affiliation: Laboratoire de Synthese de Molecules d’ Interets Biologiques, Departement de Chimie, Faculte des Sciences Exactes, Universite Constantine 1, 25000 Constantine, Algerie.

We describe herein a clean and efficient one-pot synthesis of 4H-benzo[b]pyran derivatives using dimedone, active methylene nitriles and aryl aldehyde via Knoevenagel condensation followed by Michael addition in the presence of Mg(NO3)2•6H2O as catalyst and water as a green solvent. The advantages of this method lie in its simplicity, low catalyst loading, cost effectiveness and easy handling. The present method also allows us to synthesize highly functionalized tetrahydrobenzo[b]pyran derivatives from simple…

View original 6 more words

Controlling Residual Arylboronic Acids as Potential Genotoxic Impurities in APIs


Arylboronic acids, but not the corresponding deboronated arenes, recently have been found to be weakly mutagenic in microbial assays [1].  Hence arylboronic acids may be considered potentially genotoxic impurities, and controlling the levels of residual arylboronic acids in APIs could become a regulatory requirement.  The issues should be decided by toxicology studies for the specific arylboronic acids in question.

Several approaches have been successful in removing boronic acids.  Diethanolaminomethyl polystyrene (DEAM-PS) [2],[3] and immobilized catechol [4] have been used to scavenge boronic acids.  Complex formation with diethanolamine may solubilize residual boronic acids in mother liquors.  Since arylboronic acids ionize similarly to phenols, basic washes of an API solution may remove arylboronic acids.  A selective crystallization can purge an arylboronic acid from the API.

The best means to control residual aryl boronic acids in APIs at the ppm level may be to decompose them through deboronation.  Sterically hindered, electron-rich aryl boronates…

View original 3,373 more words

ML-236B, Mevastatin (compactin)

Originally posted on New Drug Approvals:

Mevastatin2DCSD.svgMevastatin (compactin, ML-236B) is a hypolipidemic agent that belongs to the statins class.

It was isolated from the mold Penicillium citrinum by Akira Endo in the 1970s, and he identified it as a HMG-CoA reductase inhibitor,[1] i.e., a statin. Mevastatin might be considered the first statin drug;[2] clinical trials on mevastatin were performed in the late 1970s in Japan, but it was never marketed.[3] The first statin drug available to the general public was lovastatin.

In vitro, it has antiproliferative properties.[4]

A British group isolated the same compound from Penicillium brevicompactum, named it compactin, and published their results in 1976.[5] The British group mentions antifungal properties with no mention of HMG-CoA reductase inhibition.

High doses inhibit growth and proliferation of melanoma cells.[6]

Systematic (IUPAC) name

View original 1,294 more words

AG 014699, Rucaparib

Originally posted on New Drug Approvals:


AG014699, the phosphate salt of AG14447, which has improved aqueous solubility, has been selected for clinical trial.AG014699 is a tricyclic indole poly(ADP-Ribose) polymerase (PARP) inhibitor with potential antineoplastic activity.

M.Wt: 421.3593
Formula: C19H21FN3O5P
CAS No: 459868-92-9


Rucaparib, PF-01367338283173-50-2  cas 6H-​Pyrrolo[4,​3,​2-​ef]​[2]​benzazepin-​6-​one, 8-​fluoro-​1,​3,​4,​5-​tetrahydro-​2-​[4-​[(methylamino)​methyl]​phenyl]​-6H- ​Azepino[5,​4,​3-​cd]​indol-​6-​one, 8-​fluoro-​1,​3,​4,​5-​tetrahydro-​2-​[4-​[(methylamino)​methyl]​phenyl] ​-8-​Fluoro-​2-​[4-​[(methylamino)​methyl]​phenyl]​-​1,​3,​4,​5-​ tetrahydro-​6H-​azepino[5,​4,​3-​cd]​indol-​6-​one;8-Fluoro-2-(4-methylaminomethyl-phenyl)-1,3,4,5-tetrahydro-azepino[5,4,3-cd]indol-6-one8-Fluoro-2-(4-methylaminomethyl-phenyI)-l,3,4,5-tetrahydro-azepino[5,4,3- cd]indol-6-one

MW..C19 H18 F N3 O
cas of csa salt—–1327258-57-0
773059-19-1 (hydrochloride)
773059-22-6 (L-tartrate)
773059-23-7 (acetate)
459868-92-9  PHOSPHATE
AG-014447 (free base)
AG-14447 (free base) 
Agouron (Originator)
Pfizer (Originator)
Clovis Oncology
WO 2014052550, WO 2014037313, WO 2000042040WO 2004087713WO 2005012305

Rucaparib (AG 014699) is a PARP inhibitor being investigated as a potential anti-cancer agent.

Rucaparib inhibits “the contraction of isolated vascular smooth muscle, including that from the tumours of cancer patients. It also reduces the migration of some cancer and normal cells in culture.”[1]

It can be taken orally in tablet form.[2]


View original 1,817 more words


Originally posted on New Drug Approvals:


Flag Counter
7 LAKH VIEWS HIT ……………..a record and fast reaching 10 lakh views
currently in 206 countries

MOBILE-+91 9323115463
web link
Congratulations! Your presentation titled “Anthony Crasto Glenmark scientist, helping millions with websites” has just crossed MILLION views.
アンソニー     安东尼   Энтони    안토니     أنتوني

View original 78 more words

Missing out on discoveries

Originally posted on amphoteros:

Scientists make discoveries all the time. Research findings differ in terms of significance, breadth, and downstream potential, but they do happen on a daily basis to everyone who is passionate about research. Any undergraduate student who is just getting into the “research groove” is a good example. The fact that the majority of his/her discoveries early on are not going to impress the community-at-large is not important. What is critical is to get into the habit of noticing interesting things, even if they are not earth-shattering. Upon training, one gets to appreciate the finer details, which inevitably leads to significant findings.

Now let’s consider someone who has just made a truly thought-provoking discovery. Here is a question that interests me: how often have others passed by that observation and did not even think twice about its significance? One can probably say that the predecessors might not have had the right tools, which…

View original 249 more words