Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol

Catal. Sci. Technol., 2016, Advance Article
DOI: 10.1039/C6CY00734A, Paper
Eredzhep Menumerov, Kyle D. Gilroy, Maryam Hajfathalian, Colin J. Murphy, Erica R. McKenzie, Robert A. Hughes, Svetlana Neretina
Plastically deformed mesoscopic structures exposed to an etching procedure are demonstrated as highly catalytic in the reduction of 4-nitrophenol.

Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol

Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol

The severe plastic deformation of metals leads to the formation of nanotextured surfaces as well as the retention of significant strain energy, characteristics which are known to promote catalytic activity. Here, we demonstrate plastically deformed surfaces of copper and copper-based alloys as being highly catalytic using the well-studied model catalytic reaction which reduces 4-nitrophenol to 4-aminophenol by borohydride. Among the materials studied, the most catalytically active is formed in a two-step process where metal chips are mechanically sheared from a Cu–Sn alloy containing precipitates and then exposed to an etchant which removes the precipitates from the exposed surface. The so-formed structures exhibit exceedingly high catalytic activity and set new benchmarks when incorporated into a fixed-bed reactor. The formation of catalytically active sites is shown to be strongly dependent on the presence of the precipitates during the deformation process, achieving an order of magnitude increase in the reaction rate constant when compared to similarly formed Cu–Sn catalysts lacking these precipitates. The work, therefore, demonstrates a new approach for generating catalytically active sites which may be applicable to other alloy combinations.

 

////Plastically deformed, Cu-based alloys,  high-performance catalysts,  reduction, 4-nitrophenol

Synthesis in mesoreactors: Ru(porphyrin)CO-catalyzed aziridination of olefins under continuous flow conditions

Catal. Sci. Technol., 2016, Advance Article
DOI: 10.1039/C6CY00207B, Communication
S. Rossi, A. Puglisi, M. Benaglia, D. M. Carminati, D. Intrieri, E. Gallo
The Ru(porphyrin)CO-catalyzed addition of aryl azides to styrenes to afford N-aryl aziridines was successfully performed for the first time in mesoreactors under continuous flow conditions.

Synthesis in mesoreactors: Ru(porphyrin)CO-catalyzed aziridination of olefins under continuous flow conditions

S. Rossi,a   A. Puglisi,*a   M. Benaglia,*a   D. M. Carminati,a  D. Intrieria and   E. Galloa  
*Corresponding authors
aDipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, Italy
E-mail: alessandra.puglisi@unimi.it, maurizio.benaglia@unimi.it
Catal. Sci. Technol., 2016, Advance Article

DOI: 10.1039/C6CY00207B

The Ru(porphyrin)CO-catalyzed addition of aryl azides to styrenes to afford N-aryl aziridines was successfully performed for the first time in mesoreactors under continuous flow conditions. Mesofluidic technology allowed for a rapid screening of different parameters and a quick identification of the optimized reaction conditions.

 

str1

 

str1

 

 

/////Synthesis in mesoreactors, Ru(porphyrin)CO-catalyzed,  aziridination of olefins,  continuous flow conditions

PF-05387552

New Drug Approvals

str1

str1

STR3

CID 50992153.png

PF-05387552

IRAK4

CAS 1604034-71-0
C25 H27 N5 O2
11H-​Indolo[3,​2-​c]​quinoline-​9-​carbonitrile, 2-​methoxy-​3-​[3-​(4-​methyl-​1-​piperazinyl)​propoxy]​-
2-methoxy-3-[3-(4-methylpiperazin-1-yl)propoxy]-11H-indolo[3,2-c]quinoline-9-carbonitrile
Molecular Weight429.51
Molecular Formula: C25H27N5O2
Molecular Weight: 429.51418 g/mol


Synthesis

str1

PAPER

Bioorganic & Medicinal Chemistry Letters (2014), 24(9), 2066-2072

Identification and optimization of indolo[2,3-c]quinoline inhibitors of IRAK4

 aPfizer Global R&D, 445 Eastern Point Rd., Groton…

View original post 304 more words

Debiopharm and Aurigene dual c-src / jak inhibitors

New Drug Approvals

SCHEMBL2237115.pngSTR3str4

Debio 1142

Jak2 tyrosine kinase inhibitor; Src tyrosine kinase inhibitor

N-[4-methyl-3-[2-[4-(4-methylpiperazin-1-yl)anilino]-5-oxo-7,8-dihydropyrido[4,3-d]pyrimidin-6-yl]phenyl]-3-(trifluoromethyl)benzamide

Molecular Formula: C33H32F3N7O2
Molecular Weight: 615.64809 g/mol
1332328-01-4
Benzamide, N-​[3-​[7,​8-​dihydro-​2-​[[4-​(4-​methyl-​1-​piperazinyl)​phenyl]​amino]​-​5-​oxopyrido[4,​3-​d]​pyrimidin-​6(5H)​-​yl]​-​4-​methylphenyl]​-​3-​(trifluoromethyl)​-

Debiopharm S.A., Aurigene Discovery Technologies Ltd.

ALLISTER Andrès MC, Maximilien Murone,Saumitra Sengupta, Shankar Jayaram Shetty

https://www.google.co.in/patents/WO2011101806A1?cl=en

Bicyclic compounds and their uses as dual c-src / jak inhibitors

STR3

Apr. 14 /PR Newswire/ –Debiopharm and Aurigene Sign Agreement for the Development and Commercialisation of Debio 1142, a Novel Inhibitor of an Undisclosed Oncology Pathway

LAUSANNE, Switzerland and BANGALORE, India, April 14, 2011 /PRNewswire/ — Debiopharm Group(TM) (Debiopharm), a global biopharmaceutical development specialist that focuses on serious medical conditions and particularly oncology, and Aurigene Discovery Technologies Ltd (Aurigene), a Bangalore-based drug discovery company, signed on March 23, 2011 an option and exclusive worldwide license agreement concerning the development and commercialisation of…

View original post 433 more words

I (Anthony Crasto) am Editorial Board member for our Journal of Analytical & Pharmaceutical Research

New Drug Approvals

str1str2
Dear Readers
I am on  editorial board ……… Editorial Board member for our Journal of Analytical & Pharmaceutical Research………http://medcraveonline.com/JAPLR/editorial-board

This is possible with your cooperation and support

SOME PAPERS

read…….http://medcraveonline.com/JAPLR/JAPLR-02-00010.pdf
http://medcraveonline.com/JAPLR/JAPLR-02-00011.pdf

Tackling the Challenges with Poorly Soluble Drugs
http://medcraveonline.com/JAPLR/JAPLR-01-00001.pdf

View original post

Trioxacarcin A

New Drug Approvals

Trioxacarcin A, DC-45A

CAS No. 81552-36-5

  • Molecular FormulaC42H52O20
  • Average mass876.850 Da
  • 17′-[(4-C-Acetyl-2,6-dideoxyhexopyranosyl)oxy]-19′-(dimethoxymethyl)-10′,13′-dihydroxy-6′-methoxy-3′-methyl-11′-oxospiro[oxirane-2,18′-[16,20,22]trioxahexacyclo[17.2.1.02,15.05,14.07,12.017,21 ]docosa[2(15),3,5(14),6,12]pentaen]-8′-yl 4-O-acetyl-2,6-dideoxy-3-C-methylhexopyranoside
     (1S,2R,3aS,4S,8S,10S,13aS)-13a-(4-C-Acetyl-2,6-dideoxy-alpha-L-xylo-hexopyranosyloxy)-2-(dimethoxymethyl)-10,12-dihydroxy-7-methoxy-5-methyl-11-oxo-4,8,9,10,11,13a-hexahydro-3aH-spiro[2,4-epoxyfuro[3,2-b]naphtho[2,3-h]-1-benzopyran-1,2′-oxiran]-8-yl 4-O-acetyl-2,6-dideoxy-3-C-methyl-alpha-L-xylo-hexopyranoside
  • Kyowa Hakko Kirin   INNOVATOR

Trioxacarcin B

Trioxacarcin B; Antibiotic DC 45B1; DC-45-B1; Trioxacarcin A, 14,17-deepoxy-14,17-dihydroxy-; AC1MJ5N1; 81534-36-3;

Molecular Formula: C42H54O21
Molecular Weight: 894.86556 g/mol

Trioxacarcin C

(CAS NO.81781-28-4):C42H54O20
Molecular Weight: 878.8662 g/mol
Structure of Trioxacarcin C :

The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells

Natural products that bind and often covalently modify duplex DNA figure prominently in chemotherapy for human cancers. The trioxacarcins are a new class of DNA- modifying natural products with antiproliferative effects. The trioxacarcins were first described in 1981 by Tomita and coworkers (Tomita et al. , J. Antibiotics, 34( 12): 1520- 1524…

View original post 5,713 more words

BENZYL VINYL ETHER

Green Chem., 2016, Advance Article

DOI: 10.1039/C5GC02977E, Communication

Ryosuke Matake, Yusuke Adachi, Hiroshi Matsubara

A convenient preparation of vinyl ethers from alcohols with calcium carbide was developed. This protocol is an alternative to the Favorskii-Reppe reaction without any high pressure device.

Vinyl ethers are important and useful synthetic building blocks. Using a test tube with a screw cap, a convenient preparation of vinyl ethers from alcohols with calcium carbide under superbasic catalytic conditions (KOH/DMSO) was developed. The vinylation of primary and secondary alcohols was successfully achieved, affording the desired products in good yields. The gram-scale preparation of a vinyl ether was also demonstrated. In this reaction, calcium carbide acts as an acetylene source, constituting a safer alternative to acetylene gas.

 F. de Nanteuil, E. Serrano, D. Perrotta and J. Waser, J. Am. Chem. Soc., 2014, 136, 6239.

1H NMR

1H NMR PREDICT using nmrdb , signals may vary , use your discretion to understand sequence

13C NMR

13 C NMR PREDICT

Synthesis of vinyl ethers of alcohols using calcium carbide under superbasic catalytic conditions (KOH/DMSO)

*Corresponding authors

aDepartment of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Japan

Green Chem., 2016, Advance Article

DOI: 10.1039/C5GC02977E

 ////////////////////