A deacetonative Sonogashira coupling of aryl chlorides and propargyl alcohols

Organic Chemistry Periodically

While sp-sp2 couplings are now classics, whether using terminal alkynes, zinc, magnesium, boron or silicon alkynides, it is the first time I see a propargyl alcohol used as a partner in this type of coupling. The group of Yang and Wu (Zhengzhou University, China) reported last year a deacetonative “Sonogashira” coupling between aryl chlorides and tertiary propargyl alcohols:

13aIf you know your Name Reactions really well, it should remind you of the retro-Favorskii reaction, named after the Favorskii reaction (or Favorskii-Babayan reaction, see Scheme below), not to be confused with the Favorskii rearrangement.

13bReference: J. Org. Chem.2013 10506-10511 link

View original post

Synthetic applications of quintuple bonds?

Organic Chemistry Periodically

Wow. Wow, wow, wow. I was only vaguely aware that there were organometallic compounds containing quintuple bonds. They do exist, sure, but is there anything synthetically sound you can use them for?

I just came across this article in Chemistry World. A very recent paper of Kempe’s group (Universität Bayreuth, Germany) in Chem. Commun. shows some potentially interesting application for these somewhat exotic highly bonded complexes. They can activate small stable molecules such as CO2 and SO2… Great! But how can you make this quintuple-bonded wonder?

(from ChemistryWorld)

The answer lies in a previous paper of the group in Nature Chem. and it will seem odd to many readers I guess… you have to mix the Cr(II) precursor with two equivalents of KC8, a very powerful reducing agent used in inorganic chemistry (i’ts basically a potassium-graphite mixture). So far, not too practical for synthetic applications…

View original post 10 more words

Total synthesis of the proposed structure of Astakolactin……….Dr Corey Johnson

New Drug Approvals

picture credit…………Dr Corey johnson

Astakolactin is a sesterpene from the Ionian Sea near Greece possessing considerable biological properties. Hence, that’s why the authors decided to synthesize it, and also why the we’re all interested in its structure. In the conclusion of this paper, no biological studies were performed, but the characterization matches that of the natural product, which is a big deal.

read at

http://chemistrycorey.blogspot.in/2014/11/total-synthesis-of-proposed-structure.html

A lovely blog and its great author

My Photo

Corey R. Johnson
Philly native, JCSU alumnus, Brandeis alumnus, Co-author of several scholarly journal articles…

View His complete profile

http://scholar.google.com/citations?user=fJre6fAAAAAJ

https://plus.google.com/+CoreyRJohnson19144/about

View original post

CATALYSIS CONSULTING ………..DR PAUL MURRAY ON A ROLL IN CATALYSIS ARENA

WP_000231

DR PAUL MURRAY  LEFTSIDE IN BLACK SUIT

NICE TO MEET HIM AT SCIENTIFIC UPDATE OPRD CONFERENCE IN PUNE INDIA DEC 5 2014.

WEBSITE

http://www.catalysisconsulting.co.uk/

Paul Murray Catalysis Consulting helps companies to save money and resources through more efficient chemical processes.

About

Dr Paul Murray is a world leading consultant scientist, providing expertise and training in the fields of Catalysis, Design of Experiments and Principal Component Analysis. Paul is an experienced scientist with an additional expertise in automation, multivariate data analysis, process development and problem solving. Paul has a proven track record of the timely delivery of innovative solutions to client projects resulting in significant reductions in costs and resources to customers.

Dr Paul Murray

Paul Murray Catalysis Consulting provides expertise in:

  • The development and optimisation of challenging catalytic reactions.
  • The use of Principal Component Analysis (PCA) to optimise ligand and solvent selection.
  • The use of advanced experimental design linking DoE with PCA for efficient reaction development.
  • The development and use of automation for reaction screening including catalyst screening.
  • The development of chemical reactions across all stages from identification and exploitation of new chemical reaction selectivity’s through to commercial manufacture.
  • Homogeneous, heterogeneous and bio catalysis.

Consultancy

Paul Murray Catalysis Consulting offers consultancy in all aspects of Catalysis, Design of Experiments, Principal Component Analysis, solvent selection and process development.

  1. Design of Experiments to efficiently identify important reaction parameters and optimise processes:
    • Selection of the appropriate designs, factors and ranges for an experimental investigation.
    • The analysis and interpretation of the experimental data.
    • The prediction of reaction outcomes from the Design of Experiments model.
  2. Principal Component Analysis to rationalise diverse sets of materials such as solvents:
    • Selection of suitable properties for chemical datasets to generate appropriate PCA maps.
    • Selection of materials from PCA maps to enable the efficient understanding of the chemical space and requirements of the chemical reaction.
    • Selection of the appropriate designs and analysis of experimental data.
    • Partial Least Squares (PLS) modelling to understand the properties of materials that play a significant role in optimum reaction development and prediction of suitability of additional materials for the chosen reaction.
  3. Catalysis:
    • Homogeneous, heterogeneous and bio catalysis
    • Recommendation of reaction conditions for an array of transformations.
    • Guide experimental programs to optimise processes including the selection of the optimum catalyst and ligand.
    • Detailed analysis of reaction outcomes to diagnose the source of the trouble.
    • Optimisation of a commercial manufacturing process to make a sustainable and economically viable long term process.
    • Design of new shorter synthetic routes that fully exploit the opportunities presented by catalysis.

At Scientific Update Organic Process Research and Development Conference, NCL, PUNE, INDIA, 5 TH DEC 2014

New Drug Approvals

WP_000231

I am seated left with DR PAUL MURRAY, DR JOHN KNIGHT, DR WILL WATSON, At Scientific Update Organic Process Research and Dev Conference, NCL, PUNE ,INDIA, 5 TH DEC 2014

PROCESS CHEMISTRY CONFERENCES SCHEDULE

EVENT

Organic Process Research & Development - India

Title:
Organic Process Research & Development – India
Subtitle:
The 32nd International Conference and Exhibition
When:
04.12.2014 – 05.12.2014
Where:
National Chemical Laboratory – Pune
Brochure:
View Brochure

http://scientificupdate.co.uk/conferences/conferences-and-workshops/details/224-organic-process-research-and-development-conference-india.html

View original post

Pi-Process Intensification Experts LLP at CPhI Mumbai India 3rd Dec 2014…My visit

New Drug Approvals

 WP_000223
I (Dr Anthony) seated with Dr Vijay Kirpalani CEO of Pi-Process Intensification Experts LLP
at CPhI Mumbai India 3rd Dec 2014
Pi-Process Intensification Experts LLP
provide

Process Intensification

Creating competitive advantage through Improved and consistent quality, high efficiencies and maximum flexibility.

Safer, Cleaner, Smaller, Cheaper and Smarter processes , The basic principle of Process Intensification is to fit the equipment to the process and not process to the equipment, as is the case now.

Process Intensification can achieve drastic improvement in the time cycle and yields as well as converting batch processes to continuous process using specialized set of equipment. The design philosophy in process intensification is to design a process which has Chemical Kinetics as its only limitation. See the illustration below

“Process Intensification by Kinetics alone controlling the reaction, using specialized equipments; modification / telescoping of process steps achieves drastic reduction in time cycles and converts batch processes…

View original post 396 more words

IMPROVED CONTINUOUS FLOW PROCESSING: BENZIMIDAZOLE RING FORMATION VIA CATALYTIC HYDROGENATION OF AN AROMATIC NITRO COMPOUND

Figure

 

Improved Continuous Flow Processing: Benzimidazole Ring Formation via Catalytic Hydrogenation of an Aromatic Nitro Compound

 

http://pubs.acs.org/doi/full/10.1021/op400179f

pp 1427–1433
Publication Date (Web): August 6, 2013 (Article)
DOI: 10.1021/op400179f

In the development of a new route to bendamustine hydrochloride, the API in Treanda, the key benzimidazole intermediate 5 was generated via catalytic heterogeneous hydrogenation of an aromatic nitro compound using a batch reactor. Because of safety concerns and a site limitation on hydrogenation at scale, a continuous flow hydrogenation for the reaction was investigated at lab scale using the commercially available H-Cube. The process was then scaled successfully, generating kilogram quantities on the H-Cube Midi. This flow process eliminated the safety concerns about the use of hydrogen gas and pyrophoric catalysts and also showed 1200-fold increase in space–time yield versus the batch processing.